Strengthened semidefinite programming bounds for codes

نویسنده

  • Monique Laurent
چکیده

We give a hierarchy of semidefinite upper bounds for the maximum size A(n,d) of a binary code of word length n and minimum distance at least d. At any fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision) in time polynomial in n; this is based on a result of de Klerk et al. (Math Program, 2006) about the regular ∗-representation for matrix ∗-algebras. The Delsarte bound for A(n,d) is the first bound in the hierarchy, and the new bound of Schrijver (IEEE Trans. Inform. Theory 51:2859–2866, 2005) is located between the first and second bounds in the hierarchy. While computing the second bound involves a semidefinite programwithO(n7) variables and thus seems out of reach for interesting values of n, Schrijver’s bound can be computed via a semidefinite program of size O(n3), a result which uses the explicit blockdiagonalization of the Terwilliger algebra. We propose two strengthenings of Schrijver’s bound with the same computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for projective codes from semidefinite programming

We apply the semidefinite programming method to derive bounds for projective codes over a finite field.

متن کامل

Bounds for Codes by Semidefinite Programming

Delsarte’s method and its extensions allow to consider the upper bound problem for codes in 2-point-homogeneous spaces as a linear programming problem with perhaps infinitely many variables, which are the distance distribution. We show that using as variables power sums of distances this problem can be considered as a finite semidefinite programming problem. This method allows to improve some l...

متن کامل

Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

In this paper we apply the semidefinite programming approach developed in [2] to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds. Dedicated to Eiichi Bannai in occasion of his ...

متن کامل

Bounds for binary codes relative to pseudo-distances of k points

We apply Schrijver’s semidefinite programming method to obtain improved upper bounds on generalized distances and list decoding radii of binary codes.

متن کامل

New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming

We give a new upper bound on the maximum size Aq(n, d) of a code of word length n and minimum Hamming distance at least d over the alphabet of q ≥ 3 letters. By blockdiagonalizing the Terwilliger algebra of the nonbinary Hamming scheme, the bound can be calculated in time polynomial in n using semidefinite programming. For q = 3, 4, 5 this gives several improved upper bounds for concrete values...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2007